Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Da-Jun Cui,* Xianshun Zeng, Xuebing Leng, Fengbo Xu and Zhengzhi Zhang

National Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: cuidajun@eyou.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.030$
$w R$ factor $=0.076$
Data-to-parameter ratio $=19.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

An unexpected product: di- μ-iodo-bis-\{[2-(N-diphenylphosphinomethyl- N-cyclohexylamino)pyridine]iodomercury(II)\}

The title compound, $\left[\mathrm{Hg}_{2} \mathrm{I}_{4}\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{P}\right)_{2}\right]$, is found to be a symmetric doubly iodide-bridged dimer, with the phosphine ligands attached trans to the two Hg atoms $[\mathrm{Hg}-\mathrm{P}=$ 2.4726 (12) A $]$. The molecule has a centre of symmetry at the centre of the four-membered ring formed by the two Hg and two bridging I atoms.

Comment

Pyridylphosphines continue to generate much interest as excellent ligands for stabilizing many transition-metal coordination and organometallic complexes (Espinet \& Soulantica, 1999). One important property of these ligands is that they can stabilize metal ions in a variety of valence states and geometries. Hence, a metal-metal bond between an electron-rich metal (soft base) and a high-oxidation-state metal (Lewis acid) is easily formed (Zhang \& Cheng, 1996). Recently, we designed and synthesized a new pyridylphosphine ligand, namely 2 -(N-diphenylphosphinomethyl- N-cyclohexylamino)pyridine, L, and obtained a hetero-binuclear complex containing an $\mathrm{Fe}-\mathrm{Cu}$ bond (Cui et al., 2001). However, when trans $-\mathrm{Fe}(\mathrm{CO})_{3} L_{2}$ was reacted with HgI_{2}, instead of the desired compound containing an $\mathrm{Fe}-\mathrm{Hg}$ bond, the title compound, (I), was unexpectedly formed.

In (I), each Hg atom is four-coordinated by two bridging I atoms (Fig. 1), $\left[\mathrm{Hg} 1-\mathrm{I} 1 \quad 2.8036(4) \AA\right.$ and $\mathrm{Hg} 1-\mathrm{I} 1^{\mathrm{i}}$ 2.9667 (4) \AA] , one terminal I atom $[\mathrm{Hg} 1-\mathrm{I} 22.7699$ (4) $\AA]$ and one P atom from the ligand $L[\mathrm{Hg} 1-\mathrm{P} 42.4723$ (11) \AA A $]$. There is significant distortion from tetrahedral geometry, the angles about the metal ranging from 94.047 (10) to 127.87 (3) ${ }^{\circ}$ (Table 1).

The title compound may be compared with the series $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Hg}_{2} X_{4}$ which have the same molecular structure as (I) ($X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$), but with replacement of ligand L by triphenylphosphine (Bell et al., 1980, 1989b; Bowmaker et al., 1993). As in (I), the complex with $X=\mathrm{Cl}$ is centrosymmetric, whereas the bromo and iodo complexes are non-centrosymmetric. While the larger $X_{\mathrm{br}}-\mathrm{Hg}-X_{\mathrm{br}}$ angles (X_{br} is bridging halogen) and $\mathrm{Hg}-X$ distances in the iodide complex may be readily attributed to the increasing size of the halogen, no

Figure 1
A view of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Suffix A corresponds to symmetry code (i) in Table 1
ready explanation is available for the substantial asymmetry of the $\mathrm{Hg}-X_{\text {br }}$ distances found in the iodide complex. In contrast to $\left(R_{3} \mathrm{P}\right)_{2} \mathrm{Hg} X_{2}$ complexes, in which the $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ angle is an effective indicator of the σ-donating ability of both the phosphine and the halogen (Allen et al., 1985; Bell et al., $1989 a$), the $\mathrm{P}-\mathrm{Hg}-X_{t}$ angles (X_{t} is terminal halogen) in the present complex, which might, on the basis of the stronger σ donor properties of iodide compared to chloride and bromide, have been anticipated to be larger than in the chloride and bromide, are, in fact, very similar. The relative σ-donating ability of the halides is, however, reflected in the $\mathrm{Hg}-\mathrm{P}$ distance. Thus the significantly larger distance found in the iodide complex may be attributed to the greater σ-donor ability of iodide compared to chloride and bromide.

Experimental

The synthesis was carried out under an Ar atmosphere. To a solution of trans $-\mathrm{Fe}(\mathrm{CO})_{3} L_{2}(0.23 \mathrm{~g}, 0.25 \mathrm{mmol})$ was added solid $\mathrm{HgI}_{2}(0.11 \mathrm{~g}$, $0.25 \mathrm{mmol})$. After stirring for 5 min , the solid disappeared. The mixture was filtered and the solvent was removed. The residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ and gave $0.17 \mathrm{~g}(85 \%)$ of a dark yellow solid.

Crystal data

$\left[\mathrm{Hg}_{2} \mathrm{I}_{4}\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{P}\right)_{2}\right]$
$M_{r}=1657.67$
Monoclinic, $P 2_{1} / n$
$a=12.5386$ (7) \AA
$b=16.1113$ (9) \AA
$c=12.6488$ (7) \AA
$\beta=96.773$ (1) ${ }^{\circ}$
$V=2537.4(2) \AA^{3}$
$Z=2$
$D_{x}=2.170 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 634 reflections
$\theta=2.8-25.3^{\circ}$
$\mu=8.58 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, dark yellow
$0.40 \times 0.35 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.52, T_{\text {max }}=0.96$
11685 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0458 P)^{2}\right. \\
& +0.249 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.002 \\
& \Delta \rho_{\text {max }}=1.49 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-1.15 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.076$
$S=0.98$
5142 reflections
271 parameters
H-atom parameters constrained

5142 independent reflections
4365 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-15 \rightarrow 15$
$k=-18 \rightarrow 20$
$l=-11 \rightarrow 15$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Hg} 1-\mathrm{P} 4$	$2.4723(11)$	$\mathrm{Hg} 1-\mathrm{I} 1$	$2.8036(4)$
$\mathrm{Hg} 1-\mathrm{I} 2$	$2.7699(4)$	$\mathrm{Hg} 1-\mathrm{I} 1^{\mathrm{i}}$	$2.9667(4)$
$\mathrm{P} 4-\mathrm{Hg} 1-\mathrm{I} 2$	$115.61(3)$	$\mathrm{I} 2-\mathrm{Hg} 1-\mathrm{I} 1^{\mathrm{i}}$	$105.587(13)$
$\mathrm{P} 4-\mathrm{Hg} 1-\mathrm{I} 1$	$127.87(3)$	$\mathrm{I} 1-\mathrm{Hg} 1-\mathrm{I} 1^{\mathrm{i}}$	$94.047(10)$
$\mathrm{I} 2-\mathrm{Hg} 1-\mathrm{I} 1$	$105.332(13)$	$\mathrm{Hg} 1-\mathrm{I} 1-\mathrm{Hg} 1^{\mathrm{i}}$	$85.953(10)$
$\mathrm{P} 4-\mathrm{Hg} 1-\mathrm{I} 1^{\mathrm{i}}$	$104.03(3)$		

Symmetry code: (i) $2-x, 2-y, 1-z$.
All H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.96 \AA$. They were treated as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The maximum and minimum electron-density peaks are located 0.92 and 0.88 Å from Hg1, respectively.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China.

References

Allen, D. W., Bell, N. A., Fong, S. T., March, L. A. \& Nowell, I. W. (1985). Inorg. Chim. Acta, 99, 157-163.
Bell, N. A., Goldstein, M., Jones, T. \& Nowell, I. W. (1980). Inorg. Chim. Acta, 43, 87-93.
Bell, N. A., March, L. A. \& Nowell, I. W. (1989a). Inorg. Chim. Acta, 156, 195200.

Bell, N. A., March, L. A. \& Nowell, I. W. (1989b). Inorg. Chim. Acta, 156, 201204.

Bowmaker, G. A., Clase, H. J., Alcock, N. W., Kessler, J. M., Nelson, J. H. \& Frye, J. S. (1993). Inorg. Chim. Acta, 210, 107-124.
Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SMART1000 Operation Manual and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.
Cui, D.-J., Li, Q.-S., Xu, F.-B., Leng, X.-B. \& Zhang, Z.-Z. (2001). Organometallics, 20, 4126-4128.
Espinet, P. \& Soulantica, K. (1999). Coord. Chem. Rev. 193-195, 499-556. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Zhang, Z.-Z. \& Cheng, H. (1996). Coord. Chem. Rev. 147, 1-39.

