organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Da-Jun Cui,* Xianshun Zeng, Xuebing Leng, Fengbo Xu and Zhengzhi Zhang

National Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: cuidajun@eyou.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.008 Å R factor = 0.030 wR factor = 0.076 Data-to-parameter ratio = 19.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

An unexpected product: di-µ-iodo-bis-{[2-(N-diphenylphosphinomethyl-N-cyclohexylamino)pyridine]iodomercury(II)}

The title compound, $[Hg_2I_4(C_{24}H_{27}N_2P)_2]$, is found to be a symmetric doubly iodide-bridged dimer, with the phosphine ligands attached *trans* to the two Hg atoms [Hg-P = 2.4726 (12) Å]. The molecule has a centre of symmetry at the centre of the four-membered ring formed by the two Hg and two bridging I atoms.

Comment

Pyridylphosphines continue to generate much interest as excellent ligands for stabilizing many transition-metal coordination and organometallic complexes (Espinet & Soulantica, 1999). One important property of these ligands is that they can stabilize metal ions in a variety of valence states and geometries. Hence, a metal-metal bond between an electron-rich metal (soft base) and a high-oxidation-state metal (Lewis acid) is easily formed (Zhang & Cheng, 1996). Recently, we designed and synthesized a new pyridylphosphine ligand, namely 2-(N-diphenylphosphinomethyl-N-cyclohexylamino)pyridine, L, and obtained a hetero-binuclear complex containing an Fe-Cu bond (Cui *et al.*, 2001). However, when *trans*-Fe(CO)₃L₂ was reacted with HgI₂, instead of the desired compound containing an Fe-Hg bond, the title compound, (I), was unexpectedly formed.

In (I), each Hg atom is four-coordinated by two bridging I atoms (Fig. 1), $[Hg1-I1 \ 2.8036 \ (4) \text{ Å} and Hg1-I1^{1} 2.9667 \ (4) \text{ Å}]$, one terminal I atom $[Hg1-I2 \ 2.7699 \ (4) \text{ Å}]$ and one P atom from the ligand L $[Hg1-P4 \ 2.4723 \ (11) \text{ Å}]$. There is significant distortion from tetrahedral geometry, the angles about the metal ranging from 94.047 (10) to 127.87 (3)° (Table 1).

The title compound may be compared with the series $(PPh_3)_2Hg_2X_4$ which have the same molecular structure as (I) (X = Cl, Br, I), but with replacement of ligand *L* by triphenylphosphine (Bell *et al.*, 1980, 1989*b*; Bowmaker *et al.*, 1993). As in (I), the complex with X = Cl is centrosymmetric, whereas the bromo and iodo complexes are non-centrosymmetric. While the larger $X_{br}-Hg-X_{br}$ angles (X_{br} is bridging halogen) and Hg-X distances in the iodide complex may be readily attributed to the increasing size of the halogen, no

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Received 28 March 2003

Accepted 17 April 2003

Online 23 May 2003

Figure 1

A view of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Suffix A corresponds to symmetry code (i) in Table 1

ready explanation is available for the substantial asymmetry of the Hg $-X_{br}$ distances found in the iodide complex. In contrast to $(R_3P)_2$ Hg X_2 complexes, in which the P-Hg-P angle is an effective indicator of the σ -donating ability of both the phosphine and the halogen (Allen *et al.*, 1985; Bell *et al.*, 1989*a*), the P-Hg $-X_t$ angles (X_t is terminal halogen) in the present complex, which might, on the basis of the stronger σ donor properties of iodide compared to chloride and bromide, have been anticipated to be larger than in the chloride and bromide, are, in fact, very similar. The relative σ -donating ability of the halides is, however, reflected in the Hg-P distance. Thus the significantly larger distance found in the iodide complex may be attributed to the greater σ -donor ability of iodide compared to chloride and bromide.

Experimental

The synthesis was carried out under an Ar atmosphere. To a solution of *trans*-Fe(CO)₃ L_2 (0.23 g, 0.25 mmol) was added solid HgI₂ (0.11 g, 0.25 mmol). After stirring for 5 min, the solid disappeared. The mixture was filtered and the solvent was removed. The residue was recrystallized from CH₂Cl₂/CH₃OH and gave 0.17 g (85%) of a dark yellow solid.

Crystal data

$D_x = 2.170 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 634
reflections
$\theta = 2.8 - 25.3^{\circ}$
$\mu = 8.58 \text{ mm}^{-1}$
T = 298 (2) K
Plate, dark yellow
$0.40\times0.35\times0.05$ mm

Data collection

Bruker SMART CCD area-detector diffractometer	5142 independent reflections 4365 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.041$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 15$
$T_{\min} = 0.52, \ T_{\max} = 0.96$	$k = -18 \rightarrow 20$
11685 measured reflections	$l = -11 \rightarrow 15$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0458P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.030$	+ 0.249P]
$wR(F^2) = 0.076$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.98	$(\Delta/\sigma)_{\rm max} = 0.002$
5142 reflections	$\Delta \rho_{\rm max} = 1.49 \ {\rm e} \ {\rm \AA}^{-3}$
271 parameters	$\Delta \rho_{\rm min} = -1.15 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

2.4723 (11) 2.7699 (4)	$\substack{Hg1-I1\\Hg1-I1^{i}}$	2.8036 (4) 2.9667 (4)
115.61 (3) 127.87 (3) 105.332 (13) 104.03 (3)	$12 - Hg1 - I1^{i}$ $11 - Hg1 - I1^{i}$ $Hg1 - I1 - Hg1^{i}$	105.587 (13) 94.047 (10) 85.953 (10)
	105.332 (13) 104.03 (3)	105.332 (13) Hg1–I1–Hg1 ⁱ 104.03 (3)

Symmetry code: (i) 2 - x, 2 - y, 1 - z.

All H atoms were positioned geometrically, with C-H = 0.96 Å. They were treated as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. The maximum and minimum electron-density peaks are located 0.92 and 0.88 Å from Hg1, respectively.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998) and *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China.

References

- Allen, D. W., Bell, N. A., Fong, S. T., March, L. A. & Nowell, I. W. (1985). *Inorg. Chim. Acta*, 99, 157–163.
- Bell, N. A., Goldstein, M., Jones, T. & Nowell, I. W. (1980). Inorg. Chim. Acta, 43, 87–93.
- Bell, N. A., March, L. A. & Nowell, I. W. (1989a). Inorg. Chim. Acta, 156, 195– 200.
- Bell, N. A., March, L. A. & Nowell, I. W. (1989b). Inorg. Chim. Acta, 156, 201– 204.

Bowmaker, G. A., Clase, H. J., Alcock, N. W., Kessler, J. M., Nelson, J. H. & Frye, J. S. (1993). *Inorg. Chim. Acta*, **210**, 107–124.

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1998). *SMART*1000 *Operation Manual* and *SAINT* (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.

Cui, D.-J., Li, Q.-S., Xu, F.-B., Leng, X.-B. & Zhang, Z.-Z. (2001). Organometallics, **20**, 4126–4128.

Espinet, P. & Soulantica, K. (1999). Coord. Chem. Rev. 193-195, 499-556.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Zhang, Z.-Z. & Cheng, H. (1996). Coord. Chem. Rev. 147, 1-39.